

 SCALABLE FIDELITY COMPONENT-BASED SIMULATION
SOFTWARE

Don Procuniar, L3 Communications Link Simulation & Training, Arlington, Texas

 Paul E. McMahon, PEM Systems, Binghamton, New York

 ABSTRACT

Scalable Fidelity Component-Based Simulation Software (SEFCOBSS) is an approach for taking existing legacy
systems and adapting them to work with new, as well as, other legacy software systems. The SEFCOBSS method
challenges a number of traditional notions of software development and maintenance.

Over the past 30 years the U.S Government has made a significant investment in varying fidelity real-time
simulation systems. Until recently, it had been believed that many of these legacy systems were on the tail end of
their life cycle and would need to be redesigned/rewritten to be effectively utilized. SEFCOBSS encompasses the
principles, methods, architecture, and guidelines necessary to identify and effectively adapt legacy component
software to meet a broad range of fidelity training needs.

Examples from the AVCATT-A project, where the SEFCOBSS method was first employed are included.
AVCATT-A employed legacy high fidelity man-in-the-loop flight simulation software adapted for use in a lower
fidelity collective training environment.

Key to the SEFCOBSS method is the ability to isolate legacy components from other legacy systems, as well as
from newly designed software, while at the same time supporting effective communication among these systems.
Fundamental principles of the supporting SEFCOBSS architecture are described.

The paper asserts that legacy systems can be cost effectively maintained, but to do so requires a well-defined and
disciplined process that must include guidelines for legacy candidate selection and management. Included in the
paper are guidelines for candidate selection, as well as guidelines for design modification, and software verification.

This paper tells you what you need to do to effectively leverage your legacy simulation assets when faced with new
simulation requirements and/or changing fidelity requirements. This paper also dispels the traditional software myth
that old legacy software is too expensive to use and maintain. References to previously published work that support
SEFCOBSS are provided.

Author Biographies

Don Procuniar is the Director of Software Engineering for L3 Communications, Link Simulation & Training. Prior
to his current position Don was the Software Lead Engineer for AVCATT-A Aviation Reconfigurable Manned
Simulator Program. He has been employed at Link since 1980 holding numerous Software, Systems, Integration
and Program Engineering positions over that twenty-year period. Donald has vast experience in large scale complex
man-in-loop real time simulations including NASA Space Shuttle Mission Simulator, numerous F-16 training
platforms, B-52 WST, C-130 ATS and AVCATT-A.

Paul E. McMahon, Principal, PEM Systems, provides technical and management leadership services to large and
small engineering organizations. He has taught Software Engineering as an adjunct at Binghamton University,
conducted workshops on Engineering Leadership, published over twenty articles, and a book on collaborative
development entitled, “Virtual Project Management: Software Solutions for Today and the Future.” Paul held the
position of Deputy Software Lead Engineer on the L3 Link AVCATT-A Project and led the AVCATT-A
Architecture Team in support of the Project Software Lead Engineer.

INTRODUCTION

Scalable Fidelity Component-Based Simulation
Software – or SEFCOBSS for short— is an approach
for taking legacy systems and adapting them to work
with new, as well as, other legacy systems. It is an
approach to breath new life into perceived outdated
simulation systems. Until recently, it had been believed
that the cost to adapt and maintain legacy systems to
meet new customer requirements would be prohibitive.
Experiences working with SEFCOBSS indicate that to
be cost-effective legacy systems must comply with the
SEFCOBSS architecture criteria. Employing
SEFCOBSS has also demonstrated that when key
principles are followed-- including disciplined legacy
product evaluations-- the life expectancy of many
software simulation systems can be extended beyond
what was once thought to be reasonable. AVCATT-A
employed SEFCOBSS to create multiple unique
helicopter simulators utilizing 1.5 million lines of code
in a mix of new and reuse from over eight (8) different
legacy systems. Today, many of the principles,
methods and guidelines of SEFCOBSS are being
integrated into the standard software development
processes at L3 Link Simulation & Training.

WHAT IS SEFCOBSS AND WHY IS IT
IMPORTANT?

SEFCOBSS is an architectural design philosophy, but it
also encompasses a set of five (5) key steps to
implement its architecture. The SEFCOBSS approach
was first employed by L-3 Link within the Flight
Simulation domain.

Many legacy Flight Simulation systems were built on
full or near full fidelity models. Today, due to budget
constraints and rapidly changing world conditions,
there exists a greater demand for reconfigurable,
focused, task-based training devices. In this global
environment, different fidelity models are needed for a
variety of different types of simulations. Instead of
creating new simulation solutions for each of these
types, SEFCOBSS provides the capability to utilize an
existing known fidelity model to create a single
reusable component, which meets a variety of the
different fidelity needs.

The five (5) steps of SEFCOBSS include: Component
Selection, Component Isolation & Architecture Porting,
Environment Porting & Retesting, Design &
Implementation of Fidelity Changes, and Software
Verification. Each step is discussed in greater detail
later in the paper.

The SEFCOBSS architecture can be used across a
broad range of project types from Engineering Change
Proposals to existing devices through brand new
devices. It also allows a mix of both new and legacy
software from multiple sources to run in a single
environment. The philosophy of SEFCOBSS is to
“Start Integrated, and Stay Integrated” through a spiral
development process where each of the identified
spirals focuses on a planned set of functionality inside
carefully pre-screened software components. As used
here the term component implies a standalone, isolated,
and testable “chunk” of software.

While the work described in this paper is based on
experiences encountered in the flight simulation
domain, the need for scalable fidelity simulation
software is not limited to this domain. As an example,
currently there exists increasing interest in employing
modeling and simulation in the acquisition of new
weapons systems. One challenge to effectively
utilizing simulation techniques in the acquisition
process is the interoperability of legacy models
developed under diverse architectures and
environments [1]. Often, it is found that candidate
legacy software models become less attractive when
fidelity modification costs are considered. It is believed
that the principles and methods of SEFCOBSS may
hold a key to the interoperability cost and schedule
challenge.

It is also worth noting that interest in varying fidelity
simulation models is not limited to the DoD. As an
example, today the pharmaceutical industry is utilizing
simulation to model new drugs to help in creating those
drugs [1]. Clearly, the demand for a systems solution to
scalable fidelity simulation software, such as
SEFCOBSS, has never been greater.

MEANING OF SCALABLE FIDELITY & SCOPE

OF SEFCOBSS

Historically, simulations have been classified into the
three areas of Live, Virtual, and Constructive. These
classifications identify the degree of human and
equipment realism. Live simulations refer to real
people operating real systems. Virtual denotes real
people operating simulated systems, and constructive
refers to simulated people operating simulated systems.
[1]

When we use the phrase “scalable fidelity” we mean
the capability to vary the fidelity of individual
simulation sub-systems within a controlled simulation
environment.

Today SEFCOBSS is primarily concerned with
controlling the fidelity of simulated sub-systems within
a Virtual Simulation Environment interoperating with
constructive simulations, as well as other virtual and
live simulations. AVCATT-A, for example,
encompasses both Virtual and Constructive elements,
and the system interoperates with external virtual and
constructive simulation systems such as Close Combat
Tactical Trainer.

THE AVCATT-A SCALABLE FIDELITY
CHALLENGE

US Army’s Aviation Combined Arms Tactical
Trainer—Aviation Reconfigurable Manned Simulator
(AVCATT-A) is a networked system of systems
providing combined arms training through six (6)
reconfigurable manned helicopter simulators
interoperating in a simulated battlefield environment.
The system is housed in two trailers, and includes both
a Battle Master Control and After Action Review
Station. The six Manned Modules simulate
pilot/copilot/gunner positions for UH-60A/L
Blackhawk, CH-47D Chinook, OH-58D Kiowa
Warrior, AH-64A Apache, AH-64D Apache Longbow,
and the RAH-66 Comanche.

Prior to the AVCATT-A Request for Proposal, the
Simulation, Training, and Instrumentation Command
(STRICOM), conducted an extensive Fidelity Analysis
to determine the device’s requirements. Higher fidelity
manned module simulation devices had previously been
developed and deployed in support of pilot training
needs. AVCATT-A was required to be a mixed fidelity
set of devices deploying high fidelity “Shoot, Move and
Communication” systems while providing low fidelity
capabilities in the other helicopter systems. The
challenge faced on AVCATT-A was to find the most
effective way to leverage the existing higher fidelity
legacy simulation system assets in meeting the US
Army’s combined arms training needs.

OVERVIEW OF PAPER & RELATION TO
CURRENT INDUSTRY SOFTWARE

INITIATIVES

In the following paragraphs the SEFCOBSS
Architecture, along with its underlying principles, and
methods, is discussed. Guidelines for legacy candidate
selection, design modification, and software
verification, are included.

It is also worth noting that a number of the principles
and methods employed by SEFCOBSS exhibit
similarities to what today is referred to as Agile

Software Development, or “lightweight” methods [2,
3]. Agile Software Development is a methodology that
has grown largely out of the needs of small software
development organizations where “process” is desired,
but only if it is flexible and efficient.

A flexible and efficient process has also been found to
be critical to SEFCOBSS, particularly due to the
constraints imposed by existing legacy models and
associated processes. A comparison between
SEFCOBSS and Agile Software Methods is provided.

Inherent within SEFCOBSS are key architecture
compliancy rules, along with process flexibility. The
flexibility of SEFCOBSS is discussed in the section on
“Tailoring SEFCOBSS for New Applications.”

STEP 1: COMPONENT SELECTION

Initial Component selection involves an analysis of the
project requirements versus existing legacy component
capabilities. This activity includes an assessment of the
functionality, quality, and pedigree (history of use) of
candidate components. This initial component
screening is accomplished in preparation for component
porting activities. Component evaluations should
consider: ease of separation/containment; fidelity of
model versus required fidelity; requirement match;
language/operating environment of candidate software;
and availability of specific test cases/procedures.
Candidate legacy components undergo both a
SEFCOBSS Architecture porting activity and an
Environment porting activity. These two important
porting steps have been separated to aid in managing
defect injection.

Following are five (5) guidelines that can be used in
establishing your own legacy assessment process:
 Include architecture & design criteria
 Include documentation & code assessment

criteria
 Include test criteria
 Include configuration management criteria
 Include metrics

STEP 2: COMPONENT ISOLATION &

SEFCOBSS ARCHITECTURE PORTING

Once a candidate component has been selected it is then
isolated within its legacy environment and ported to the
SEFCOBSS Architecture. In cases when the legacy
environment is not available the architecture porting
step is conducted in the chosen target environment.
Oftentimes when dealing with legacy systems,
engineers will want to redesign major sections of the
system. It is not uncommon for good engineers to

desire to rewrite legacy code rather than reuse it.
However, our experience indicates that this type of
activity should be managed closely. Changing the
legacy code introduces significant risk to cost and
schedule due partly to the fact that the originator of the
legacy code is rarely available. Past experience shows
that very few legacy systems have remained in their
original designed state, many modifications have been
made without redesign, and the documentation that
exists is frequently not in sufficient detail to describe all
the functionality as it currently exists. These same
legacy systems, however, have been deployed without
error for many years, and our experience indicates that
as long as they are not modified they can function error
free in the new environment.

Background of Component-Based Software

One of the major challenges faced in establishing a
cost-effective approach to adapting legacy systems is
the simple fact that most of these systems were
designed to work in a specific environment each with
their own set of unique constraints. Examples of such
constraints include operating system, software
language, compiler, hardware platform, and the legacy
system software architecture.

The phrase “Component-Based” refers to an approach
to build large software systems by integrating
previously developed software components. These
systems can include a mix of both commercial and non-
developmental items. Previously published literature
indicates “the degree to which a component’s internal
structure is accessible suggests different approaches to
adaptation.” [4]

Three approaches have been identified:

• White box: This approach allows the
component to be significantly
redesigned/rewritten to operate with other
components

• Grey box: This approach doesn’t modify the
actual source of the component, but utilizes an
Application Programming Interface (API)
provided by the component to essentially
extend the components features

• Black Box: This approach uses the component
as is with no API and no changes to the actual
source code

Historically, experience has shown that white box
approaches can result in serious maintenance problems
as often the complexity and size of the planned changes
are underestimated. One approach to minimize this risk
is using what is referred to as “wrapper” software.

What Do We Mean by “Wrappers”?

“Wrappers” are specialized software elements that act
as middleware between disparate legacy entities.
“Wrappers” could be considered a form of API as
identified in the “grey” box approach.

Why We Refer to SEFCOBSS as Component-Based

We refer to SEFCOBSS as a “Component-Based”
software approach because it employs a set of well-
defined Wrapper elements to isolate legacy
components, while at the same time allowing these
components to effectively communicate. See Figure 1.

The wrapper elements are discussed in greater detail in
the following paragraphs. To help comprehend what
SEFCOBSS Architecture Porting entails, a brief history
of a flight simulation software architecture is provided.

Figure 1 Component-Based Architecture Employing
 “Wrapper” Elements

History of L3 Link Flight Simulation Software
Architecture

Since the early 70’s it has been recognized that there
exists a number of recurring software design patterns
within the Flight Simulation product line. Examples of
such patterns include:
 Methods to activate and communicate with real-

time simulation modules
 Methods to communicate and implement

simulated malfunctions
 Methods to modify and display simulation

parameters.
 Methods to control and communicate modes and

states such as freeze, reset, initialization, run, and
playback.

Because these patterns frequently recurred, rules were
developed, documented and provided to simulation
engineers as guidance to simplify their engineering

Wrapper A
Software

Legacy
Component
System A

Wrapper C
Software

New
Component

Wrapper B
Software

Legacy
Component
System B

Master
Exec

Wrapper A
Software

Legacy
Component
System A

Wrapper C
Software

New
Component

Wrapper B
Software

Legacy
Component
System B

Master
Exec

simulation tasks as they developed simulation models
in the past. The rules that were applied to implement
the design patterns were simple, but, more importantly,
they were leveraged again and again across many
legacy flight simulators. The identified patterns,
together with their associated implementation rules,
embodied the software architecture for many of today’s
legacy simulation systems. This legacy simulation
software architecture has been described in greater
depth in previous published literature [5].

Fundamental Principle of the SEFCOBSS
Architecture

Fundamental to the SEFCOBSS Architecture is the
establishment of concise rules. For example,
SEFCOBSS provides precise porting and fidelity
scaling rules for legacy software. Examples of fidelity
scaling rules include how to disable and enable
simulated malfunctions, and how to disable and enable
instructor station editable parameters. Fidelity scaling
rules also include steps to enable and disable the
processing of discrete inputs, and state-specific logic.

Many of the SEFCOBSS rules are complementary to
the rules that were used by simulation engineers when
originally designing today’s legacy simulation systems
back in the early 70’s and 80’s. It is important to note
that without the structured architecture of the flight
simulation product line, the fidelity scaling rules, which
today are relied upon within SEFCOBSS, would have
been much more difficult to develop.

SEFCOBSS Architecture

One of the key challenges faced with legacy systems is
the potential high cost of change activity to meet new
requirements. The SEFCOBSS method addresses this
challenge by minimizing legacy software changes
through the use of “Wrapper” elements. The
“Wrapper” software includes three key elements:

 Component Executive
 Import Interface Agent
 Export Interface Agent

Fidelity Scaling Through Import/Export Interface
Agent

A core principle of SEFCOBSS states that, “legacy
system change activity should be minimized.” By
minimizing legacy changes, SEFCOBSS reduces the
risk of cost and schedule overrun due to unanticipated
system breakage. At the same time, minimizing change
also increases our opportunities for future fidelity

scaling. The Import and Export Interface Agents are
key wrapper elements in support of this core principle.

Within the SEFCOBSS architecture, legacy software
continues to operate internally just as it did within the
legacy environment. This is accomplished through the
use of a local data area structured identically to the
legacy environment itself. This approach allows the
legacy software to effectively run in a “black box”
mode minimizing the chances of software breakage
caused by new requirements.

It is important to note that within the SEFCOBSS
Architecture, legacy components may continue to
compute results that are not required within the new
simulation environment. This is where the importers
and exporters come into play. Importers are used to
supply external interface data to the local data area
where the legacy system acts upon it just as it did in the
legacy environment. This technique may also be
employed to disable logic that is not required in the new
environment. Examples include disabling
malfunctions, or discrete input (cockpit switches)
processing logic. The Exporters move legacy system
computed results out to a Shared Memory areas where
the results can be accessed by other Importers.

Fidelity Scaling Through Component Executive

The Component Executive provides a second method to
scale fidelity. The Component Executive acts as a
middleware element between the MASTER Executive
and the legacy system. This Wrapper element allows
complete sub-systems or portions of sub-systems
(modules) to be turned on or off. Another option
provided by the Component Executive is the execution
of sub-systems, or modules at lower rates. This
wrapper element provides another method to scale
fidelity while meeting our core principle of minimizing
change to the legacy software itself.

Two (2) Key Attributes of Wrapper Software

The wrapper software supports two key attributes of the
SEFCOBSS architecture. First, by minimizing the
actual changes to the legacy software itself, we also
minimize the need to re-test previously verified
software. This attribute supports reduced cost and
schedule.

Second, the wrapper software isolates legacy
components. This key attribute allows legacy
components that were originally developed using
disparate methodologies and programming languages to
coexist. The Exporters and Importers route data among

the components thereby providing consistent and
reliable communication.

It is an outdated belief that software developed using
different methodologies is at risk of not being able to
communicate. This is only true, if you haven’t
established a sound architecture, such as SEFCOBSS,
providing rules to ensure reliable communication.
SEFCOBSS supports a hybrid of methodologies
(object-oriented, structured analysis) and languages (C,
C++, Fortran, Ada83, Ada95) because it was built
specifically to do so.

STEP 3: ENVIRONMENT PORTING &
RETESTING

Environment porting includes activities associated with
moving the software to the target operating system,
compiler and platform. This porting step has been
separated from the SEFCOBSS Architecture Porting
(development & testing of candidate component with
SEFCOBSS wrapper elements) to manage potential
error injection.

More Than Just a Technical Architecture

It is important to recognize that SEFCOBSS is far more
than just a Technical Architecture. In order for
SEFCOBSS to operate effectively a disciplined
development process with precise rules must be
followed. Those rules include the legacy candidate
selection process. To appreciate this process within
SEFCOBSS requires an understanding of how
SEFCOBSS views code.

SEFCOBSS and Code

The SEFCOBSS Method has been referred to as a
“Code-Focus” method, but this should not be
misunderstood as coding before design, or coding
before requirements.

Code is viewed within the SEFCOBSS method as a
high valued legacy asset. As such, its value is crucial in
establishing an objective and accurate assessment of the
product. We have found that one of the best objective
assessment methods of a candidate product is to execute
its code, and measure the code’s capability against the
requirements. In support of this process, one of the
early and crucial steps in the SEFCOBSS method is the
porting of each legacy candidate to the chosen target
environment.

Key Legacy Porting Rule

It is important to note that the SEFCOBSS method does
not allow functional changes to the software as part of
the porting activity. The only changes allowed are
those architecture related modifications necessary to
compile and execute the software within a SEFCOBSS-
compliant architecture. Once the candidate component
has been ported to both the SEFCOBSS Architecture
and the target environment, a well-defined assessment
process must be followed as discussed in Step 1.

The Criticality of the Development Environment
and Target Architecture

To support a “code-focus” method such as SEFCOBSS,
it is critical to get your development environment
established and Target Architecture up and running as
early as possible. This is necessary to support a code-
executing legacy analysis process. It is also crucial that
the Target Architecture include the actual chosen
operating system, hardware platform, compilers and
key tools that you plan to use in your delivered system.

Key to the SEFCOBSS method is getting your
candidate software into your chosen environment to
accurately assess required change activity. When this
step is short-circuited, often we find that legacy
products are selected under the false belief that the
changes required to meet the new requirements will be
small. Unfortunately, when this conclusion is not
backed up by executing code within the chosen Target
Environment it is frequently found to be erroneous.

STEP 4: DESIGN & IMPLEMENTATION OF
CHANGES

Maintenance of Legacy Design Style

Once a legacy candidate component has been approved,
design changes can proceed. We have found that the
design process employed must be a disciplined one, but
it also must be supportive of the special needs of legacy
component software, and these needs often differ from
traditional new development.

As an example, design, documentation and code
guidelines should encourage the maintenance of
existing legacy styles, rather than require legacy
products to conform to the style employed by newly
developed software. Rules for modifying legacy
systems should be incorporated into your standard
design process.

The Need for a Detailed Design Review

Frequently in a heavy legacy environment
implementation changes will be small, but this doesn’t
mean you should waive the need for a detailed design
review. Even if the legacy system meets 100% of the
allocated requirements, it is important to conduct a
detailed design review to verify key system
requirements.

Following are five (5) sample checklist items indicating
why a detailed design review is necessary in a heavy
legacy environment:

 Documentation sufficient?
 System requirements met?
 Design complete?
 Test cases complete?
 Configuration management controls sufficient?

Keep in mind that even when legacy components
appear to be perfect candidates to meet new
requirements, oftentimes system level requirements and
interfaces to other components that the system has not
previously communicated with will require some level
of design work.

Keeping with our core principle, the goal is to isolate as
many, if not all, of this work to the wrapper elements.
The primary focus of detailed design reviews for legacy
systems may therefore become the wrapper software
itself.

Manage Re-design Closely

In general, re-design should be discouraged because it
is counter to the core principles and it effectively
defeats the goal of maximizing the value of the legacy
asset. The desire is to leverage all of the legacy
systems code and all it’s assets (i.e. test cases, testing,
documentation).

When change to the original legacy component is
required, the change should be made through the use of
creating new software elements that provide that
change without modifying the legacy component. This
allows both the original and new capabilities to be
tested and maintained. Any change that is not directly
related to a customer requirement should be thoroughly
analyzed. This topic is addressed further in the section
on Verification.

STEP 5: SOFTWARE VERIFICATION

Once the design is complete, one can move on to the
implementation and verification phase. It is important

in the verification phase to maintain awareness of the
fact that a goal of SEFCOBSS is to leverage more than
just the code asset.

As an example, when the pedigree (history of use of
product) of a legacy asset indicates that the component
has been accepted and is being used successfully on one
or more deployed simulation projects, it may be well
worthwhile to leverage the test cases and test
procedures for this product as well.

SEFCOBSS provides implementation rules that allow
us to take advantage of previously tested and accepted
legacy assets through a “black box” component level
test philosophy. This approach reduces the cost
associated with traditional new software low level
testing.

COMPARISON BETWEEN THE SEFCOBSS
METHOD AND AGILE SOFTWARE METHODS

Much has been written over the past few years on the
subject of Agile Software Development. Agile
methods, also referred to as “lightweight” methods,
have recently appeared in industry literature primarily
in response to the needs of small software development
companies. Many of these small companies have
traditionally operated in a “code and fix” development
mode with very little formal processes and procedures.

Agile methods can be thought of as a compromise
between the “code and fix”, or “no process” approach,
and the large company historical “too much process”.
[6] Key characteristics of Agile processes include:

 Code & Test Focus
 Continual Design Through Refactoring
 Pair Programming
 Continuous Planning and Integration
 Continuous Measurement

While the associated inefficiencies of “code & fix” are
well known, many small companies also believe that
the overhead costs of formal processes could not be
tolerated within their cost constrained environments.

Clearly, due to communications needs, larger
companies/projects need more formal processes.
However, our experience with SEFCOBSS-- as
discussed in the following paragraphs--may motivate
some larger companies to take a closer look at what a
Hybrid “Agile” Process could offer a large legacy-
focused project within the context of a disciplined
development environment.

CODE & TEST FOCUS

Similar to most Agile Methods, SEFCOBSS has a code
and test focus, but the motivation for this focus within
SEFCOBSS is different. Recall that SEFCOBSS was
developed specifically to support scalable fidelity
simulation software by leveraging existing legacy
assets. Oftentimes, we find that legacy simulation
software assets were originally developed to operate in
environments quite different from current needs.

When it comes to evaluating the suitability of software
assets, too often--in the past-- early evaluations have
been found to be overly optimistic. This has been at
least partially due to the lack of critical information
necessary to make an accurate assessment. For
example, analysis limited to documentation, or a desk-
check of the code, can easily mislead when it comes to
understanding the real value of a product.

Because the code already exists for legacy products,
SEFCOBSS leverages this fact by placing high value on
the evaluation of the executing code itself.
Documentation is also evaluated, but the real value is
based on what the product can actually do, rather than
what it might be able to do in the future, or what its
documentation claims it can do.

One of the concerns often expressed with this approach
relates to the schedule time constraint. To address this
concern, the SEFCOBSS method does not encourage
spending a great deal of time studying the code. Rather
the focus within the SEFCOBSS method is on getting
the baseline legacy product running within the chosen
target environment and testing it against its allocated
requirements.

Before a single line of code is changed to add new
functionality, the SEFCOBSS method requires that we
know just what the product can and cannot do. This
supports a more objective legacy evaluation process.

Because the baseline product is also controlled, the
method also supports a more accurate measurement of
change activity. For this reason, the SEFCOBSS
method has been referred to as a “code and test” focus
method, and a “continual measurement” method.

CONTINUAL DESIGN THROUGH
REFACTORING

With respect to design, SEFCOBSS has both
similarities and differences with Agile Methods. One
of the well-publicized features of Agile Methods is
Refactoring, or continual restructuring of the code to
improve it. This thought admittedly scares many

software managers in traditional large engineering
organizations. It conjures up the notion that the code
will never be quite “good enough” and the related fear
of cost and schedule overrun.

Agile Methods in Small Organizations

In small organizations where Agile Methods are being
deployed successfully, refactoring is usually
implemented through direct programmer ownership of
budget and schedule. For refactoring to succeed,
programmers must be accountable for cost and
schedule and self-manage any refactoring with respect
to commitments.

SEFCOBSS View of Refactoring – “If it isn’t
broken, don’t fix it”

SEFCOBSS takes a different perspective when it
comes to improving the structure of the code and this
perspective is derived from one of its core principles;
that is the desire to leverage the maximum value from
the legacy asset.

As previously discussed, SEFCOBSS views legacy
assets as far more than just code. As an example, a
significant legacy product value is found in the
previous testing many of these products have
undergone within their original environment, and often
under the watchful eye of a customer.

Unfortunately, when you change the structure of the
code you run the risk of invalidating previous testing.
In this situation tests must be re-run to ensure
functionality has not been compromised. This
diminishes the core value of the legacy asset.

The SEFCOBSS approach to previously tested legacy
software is a “black box” approach. SEFCOBSS uses
“wrapper” techniques to transform the code into an
executing system within the new environment, and
then tests it at a “black-box” level to see what it can
do. SEFCOBSS doesn’t even recommend that time be
spent understanding how the legacy component works
“on-the-inside”.

The SEFCOBSS counter principle to Refactoring is,
“If it isn’t broken, don’t fix it.” While admittedly there
does exist some risk in this approach, it has proven to
be a practical one in support of effective utilization of
limited cost, schedule and personnel resources.

PAIR PROGRAMMING

Pair programming may be one of the most
controversial topics found in Agile Methods. It is a

key principle of Extreme Programming (XP) [7], one
of the better know Agile Methods. Pair programming
requires two programmers, rather than one for each
task. The rationale, as described by one programmer at
a small company that uses XP is that “the dialogue”
with the co-worker becomes invaluable in verifying the
design and detecting defects early. [6]

Today, in many large organizations, formal peer
reviews have been instituted to help detect defects
early. While most believe that peer reviews have
value, field reports of actual productivity gains
resulting from peer reviews have been mixed [8].

Detecting Errors Early with the SEFCOBSS
Method

While the SEFCOBSS method does not utilize pair
programming, early defect detection is of paramount
importance within the process. SEFCOBSS achieves
this goal through a combination of early and
continuous testing and mentoring and oversight
provided by senior personnel. Formal peer reviews of
code, test cases, and design artifacts are instituted with
software leads empowered to make practical day-to-
day decisions regarding who should attend which
reviews, and how to most effectively apply the valued
asset of senior oversight. For example, decisions on
whether to send a senior engineer to a given peer
review is made based on a number of factors including
product pedigree (history of product), complexity of
change, and track record of the assigned engineer. By
employing such a criteria within SEFCOBSS, valuable
senior talent is effectively utilized.

CONTINUOUS PLANNING AND

INTEGRATION

When employing Agile Methods plans are usually of
short duration (2-3 weeks), and re-planning is not
discouraged. Historically, on many large projects,
bulky software development plans have quickly become
“shelf-ware”. This is often caused by aggressive
schedules that leave little time for maintaining verbose
plans that can easily become out of date in a rapidly
changing environment.

The SEFCOBSS Approach to Planning

The SEFCOBSS method is sensitive to today’s cost
and schedule constraints. In response the process
encourages detailed plans of short duration (usually 1-
3 months), although not as short as typical Agile
Development plans. As an example, SEFCOBSS
recommends that up front planning first focus on the
development environment, and target architecture in

support of legacy product porting and evaluation.
This approach supports the baseline code-focus
philosophy of SEFCOBSS. Once the baseline legacy
products are ported and analyzed in accordance with
the legacy candidate selection process, the next level of
detailed planning can be put in place and managed
more effectively. This approach also supports the
development of more accurate schedules as greater
understanding of the task exists.

CONTINUOUS MEASUREMENT

Continuous measurement in an Agile Development
environment doesn’t mean continually asking the
programmer when they will be done. But it does mean
gathering real project data that can provide real insight
into project activities with the least interruption
possible to the on-going effort.

Too often on large highly structured projects metrics
plans are put in place, and data is collected, but the
data simply doesn’t get used in the day to day
decision-making activities of the project. SEFCOBSS
has inherent within its methods a standard set of
metrics that are key to the on-going effort and effective
day-to-day management. SEFCOBSS metrics include:

 Size
 Requirements
 Test
 Cost & Schedule
 Resources

Projects are encouraged to enhance this list with their
own project specific metrics, but the core SEFCOBSS
metrics are required and relate specifically to the status
of the legacy products and the activities required to
modify these products to meet new user needs.

Using Metrics to Manage

As the SEFCOBSS design process proceeds, engineers
become increasingly familiar with their assigned
software product. Initial estimates of lines of code are
usually based on historical data and experience. By
periodically updating the estimates, software lead
engineers see trends early and initiate corrective action.
As an example, a significant increase in the estimated
new lines of a given sub-system may indicate greater
complexity than originally thought. This could lead to
the addition of experienced staff early thereby avoiding
costly schedule impact late in the project.

SEFCOBSS AS AN AGILE METHOD FOR
LARGE SCALE SIMULATION PROJECTS

As stated earlier, SEFCOBSS is more than a Technical
Architecture. It is an approach for legacy systems that
can be successful only when deployed together with its
related processes and methods.

Some of the principles and methods within SEFCOBSS
may appear to contradict traditional software
engineering principles (i.e. focus on code early, testing
before design). We believe this perception results from
a misunderstanding of the fundamentals of good
software engineering. A recent article by Mark Paulk,
one of the coauthors of the Software Engineering
Institute Capability Maturity Model (SEI CMM)
indicates that Agile Methods are not counter to a
disciplined process, but rather complement a
disciplined process and the goals of the CMM [9].

Our experiences utilizing SEFCOBSS agree with this
assessment and also go further to conclude that many of
the Agile Methods, if used together with a sound
technical architecture and related rules, such as what
SEFCOBSS provides, can in fact work on large projects
as well as small. This is due to the fact that an
architecture such as SEFCOBSS supports the
partitioning of a large development effort into smaller
“chunks” where each can be managed through a “small
team” philosophy. This subject was addressed in
greater detail in an article published at the Software
Technology Conference in 2001 by one of the co-
authors of this paper [6].

TAILORING SEFCOBSS FOR NEW
APPLICATIONS

While approaches to architecture and design require
well-defined rules, a key to leveraging real legacy asset
value is flexibility. Flexibility implies the need to be
able to tailor one’s approach to the specific
requirements and constraints of selected legacy
products and supporting organizations.

In this regard, we view SEFCOBSS as a framework
[10], rather than as a final solution. The SEFCOBSS
method, in effect, provides the starting point framework
from which project unique tailoring is accomplished.
As an example, we have found that an architecture
criteria is essential and must be established early to
succeed in a code-focused legacy asset environment.
SEFCOBSS provides architecture criteria guidelines,
but it doesn’t dictate a single rigid criteria. SEFCOBSS
Architectural guidelines are applied to each component
supporting the right choice for that component. For
example, the SEFCOBSS Architecture allows one

component to be developed new (i.e. using Object
Oriented methods), the next component to be reused
without modification, and still others to be reused with
modification following the legacy design style, all
working together within one system.

SEFCOBSS Compliancy

While we do view SEFCOBSS as a framework, there
also exists a “core” set of rules that must be met by
each project to be considered SEFCOBSS compliant.
For example, there are well-defined rules on how
“wrapper” elements must be constructed to ensure
components can be activated by the Master Executive
and how they communicate with other components.
These rules are crucial for baseline product porting and
execution within the SEFCOBSS environment.

It is worth noting that the SEFCOBSS core does not
dictate a specific documentation standard, but it does
require core design artifacts and it does provide the
guidance to tailor the process to meet your project’s
specific documentation needs.

OLD MYTHS DISPELLED

It is an outdated belief that legacy software will always
be too expensive to maintain when used to meet new
and modern requirements. It is an outdated belief that
different methodologies and different languages can’t
coexist within a single cohesive and reliable
architectural environment. It is an outdated belief that
you must restructure poorly structured code if you want
the product to be maintainable. It is an outdated belief
that large projects cannot apply agile methods
effectively.

Some of the methods of SEFCOBSS may appear non-
traditional, but SEFCOBSS has proven to be a practical
and effective method in a rapidly changing cost
constrained world. What we have learned using
SEFCOBSS on large efforts is not unlike what many
small companies have recently learned on small
projects using Agile Development Processes. While the
SEFCOBSS method may appear non-traditional, it is
not without discipline. SEFCOBSS supports the
coexistence of discipline and agility through its Spiral-
focused development process. In reality, SEFCOBSS
represents the next step in disciplined process
optimization for simulation projects.

CONCLUSIONS

Scalable Fidelity Simulation Software is in great
demand today, but to achieve it requires more than just

software. SEFCOBSS encompasses the necessary
architecture and rules to scale software, along with a
well-defined and disciplined process. This process
must start with product control, and understanding what
the base product can and cannot do. This in turn leads
to carefully managed and measured change to fit new
customer needs.

When we think about Scalable Fidelity and Software
often it brings to mind the end-product. That is, code
running in the chosen target machine. However, to
effectively leverage your legacy simulation assets when
faced with new simulation requirements, or changing
fidelity requirements, you must look beyond the code
itself. Legacy code is a critical asset, not because it is
expensive to code, but because of the value that
underlies the code itself. That is, the requirements
analysis, design, reviews, and testing that all went in to
making the product what it is today.

To leverage the real value of your legacy assets you
must first recognize where that value lies. Coding is
not hard. Developing mature, proven code that
produces a satisfied customer requires forethought and
discipline across the full life cycle. By leveraging the
full value across the complete product life cycle, the
real payback of our legacy assets will be realized.

REFERENCES
1. Simulation Based Acquisition: A New Approach,
Report of the Military Research Fellows, Defense
Systems Management College, December 1998
2. Agile Software Development, Alistair Cockburn,
Addison-Wesley, 2002
3. Adaptive Software Development, Jim Highsmith,
Dorset Publishing House, 1999
4. Component-Based Software Development/COTS
Integration, www.sei.cmu.edu
5. Pattern-Based Architecture: Bridging Software Reuse
and Cost Management, Paul E. McMahon, March 1995,
CROSSTALK
6. Integrating Systems & Software Engineering: What
Can Large Organizations Learn from Small Start-Ups?,
Paul E. McMahon, 2001 Software Technology
Conference, www.stc-online.org
7. Extreme Programming Explained: Embrace Change,
Kent Beck, Addison-Wesley, 2000
8. Software Project Management, Walker Royce,
Addison-Wesley, 1998
9. Extreme Programming from a CMM Perspective,
Mark Paulk, SEI, IEEE Software, Nov/Dec 2001
10. Virtual Project Management: Software Solutions for
Today and the Future, Paul E. McMahon, CRC Press
LLC, 2001

