
 AVCATT-A: A CASE STUDY OF A
 SUCCESSFUL COLLABORATIVE DEVELOPMENT PROJECT

Don Procuniar, L3 Communications Link Simulation & Training, Arlington, Texas
 Paul E. McMahon, PEM Systems, Binghamton, New York

Dennis Rushing, Simulation, Training and Instrumentation Command, Orlando, Florida

 ABSTRACT
With recent advances in collaborative technology and tools, many organizations are today taking advantage of
distributed development to overcome typical project management obstacles, such as compressed schedules, skilled
personnel shortages, and other resource constraints. This paper is not about traditional subcontract relationships. It
is about contemporary development challenges and the collaborative solutions successfully implemented by L3
Communications Link Simulation and Training on the US Army’s Aviation Combined Arms Tactical Trainer—
Aviation Reconfigurable Manned Simulator (AVCATT-A).
Collaborative development, as the term is used in this paper, implies the use of multiple physically separated
developer and customer groups, operating as a single integrated team utilizing common processes, tools, support
services, and a common technical vision all driven through a single streamlined management chain. A few years
ago such a development concept might have seemed inconceivable. Today, through the use of the World Wide Web,
a private company intranet, e-mail, tele- and videoconferencing, and key collaborative tools (i.e. Netmeeting,
ClearQuest, ClearCase…), the three (3) primary AVCATT-A development sites (Arlington, Texas, Orlando,
Florida, and Binghamton, New York) are collaboratively developing the AVCATT-A solution with their customer,
the Simulation, Training, and Instrumentation Command (STRICOM), as an integral team member.
Specifically, this paper discusses the important relationships among the AVCATT-A technical architecture, the
management of remote site tasking and customer involvement during the development. Techniques employed to
define a project common architecture, address on-going architecture-related issues, and communicate architecture-
related decisions to the full team are described. The complex relationships among build planning, project processes
and tools, and the technical infrastructure are discussed, along with factors that led to the AVCATT-A specific
solution.
The paper addresses the critical aspects of leadership, conflict management and site-specific culture in a
collaborative environment, along with how these issues affected the AVCATT-A solution. Project communication
rules and the degree of “process freedom” allowed at individual sites are discussed along with rationale. Factors
driving the selection of software tools and platforms are also identified, along with lessons learned associated with
the development of a common AVCATT-A workflow process.
References to other published collaborative development works are provided as an aid to the reader in
comprehending the challenges being faced today on many collaborative efforts, along with practical and affordable
techniques found successful on AVCATT-A.

Author Biographies
Don Procuniar is the Software Lead Engineer for L-3 Communication, Link Simulation & Training AVCATT-A
Aviation Reconfigurable Manned Simulator Program. He has been employed at Link since 1980 holding numerous
Software, Systems, Integration and Program Engineering positions over that twenty-year period. Donald has vast
experience in large scale complex man-in-loop real time simulations including NASA Space Shuttle Mission
Simulator, numerous F-16 training platforms, B-52 WST, C-130 ATS and AVCATT-A.

Paul E. McMahon, Principal, PEM Systems, provides technical and management leadership services to large and
small engineering organizations. He has taught Software Engineering as an adjunct at Binghamton University,
published over fifteen articles, and a book on collaborative development entitled, “Virtual Project Management:
Software Solutions for Today and the Future.”

Dennis Rushing is a senior software engineer at the U.S. Army Simulation, Training, and Instrumentation
Command (STRICOM). He currently supports the development of the AVCATT-A and other virtual simulation
systems.

INTRODUCTION

This paper is about the challenges being faced today
when multiple companies and/or multiple physically
separated sites join forces on an advanced technology
software intensive project. It is important to note that
this paper is not about traditional subcontractor
relationships, but rather it is about the contemporary
development challenges faced when operating as a
single integrated, but physically separated, team.
Many of the issues faced involve the effective
utilization of processes, tools, support services, and
people to aid the development and communication of a
common technical vision all driven through a single
streamlined management chain.

The paper provides the motivation for distributed
collaborative development, and identifies four (4)
misleading perceptions of why many collaborative
ventures fail today. Six (6) patterns of successful
collaborative operations based on previously published
work are discussed. Examples of difficulties
encountered when alternate patterns are utilized are
included. Through the discussion insights into the
challenges faced by contractors and customers when
operating in a distributed fashion are provided. In this
paper the words distributed and virtual are used
synonymously.

MOTIVATION FOR DISTRIBUTED
COLLABORATIVE OPERATIONS

Why should one care about distributed collaborative
development? Simply put, success ultimately depends
on the effective utilization of resources. Today the
software industry is facing a critical shortage of key
resources. At the same time customers are looking for
solutions to new challenges based on existing products.
This, in turn, is creating an increasing demand for
personnel with specific product knowledge and
experience. As an example from the modeling and
simulation domain, because of the extensive reuse of
Semi-Automated Force (SAF) products, such as
OneSAF Testbed (OTBSAF), personnel with specific
knowledge and experience in this technology are in
considerable demand. Frequently, several groups with
different skills are needed to incorporate multiple
products into a single integrated solution. Often these
groups exist at different geographic locations and could
even be employed by different organizations.

Imagine if your organization just won a contract and
the people with the skills you need aren’t employed in
the city where you plan to manage the development? In
the past the solution would have been to “move the

people”. But today, given aggressive development
schedules, and limited resources for retraining or
relocating people, this paradigm is shifting to the use of
distributed operations to “move work, not people.”
While the motivation is clear, many companies are
today experiencing difficulties implementing
collaborative operations.

MISLEADING PERCEPTIONS ABOUT
COLLABORATIVE OPERATIONS

Research conducted a few years back indicates that
many collaborative ventures fail due to four (4) reasons;
cultural incompatibility, leadership struggles, lack of
trust, and inbred notions of competition [1]. More
recent research [2], however, indicates that these
perceived reasons for failure are, in actuality, symptoms
and that underlying these symptoms is a set of
fundamental causes and remedies. A solid
understanding of these underlying causes and remedies
can significantly increase a distributed project’s
chances for success. This same research also indicates
that there are a number of useful and identifiable
patterns associated with successful collaborative
operations. Included throughout this paper are real
examples of the identified patterns as implemented by
L3 Communications Link Simulation and Training and
their customer, the Simulation Training, and
Instrumentation Command (STRICOM), on the US
Army’s Aviation Combined Arms Tactical Trainer—
Aviation Reconfigurable Manned Simulator
(AVCATT-A) project. A brief overview of the
AVCATT-A project is provided.

THE AVCATT-A PROJECT

The AVCATT-A is a networked system of systems
providing combined arms training through six (6)
reconfigurable manned helicopter simulators
interoperating in a simulated battlefield environment.
The system is housed in two trailers, and includes both
a Battle Master Control and After Action Review
Station. The six Manned Modules simulate
pilot/copilot/gunner positions for UH-60A/L
Blackhawk, CH-47D Chinook, OH-58D Kiowa
Warrior, AH-64A Apache, AH-64D Apache Longbow,
and the RAH-66 Comanche.

Subsequent to contract award in October 1999, project
start-up activities were conducted collocated in
Arlington, Texas through March 2000. In the March
2000 timeframe, an initial work split across the three
primary AVACTT-A development sites was
established. The Orlando, Florida site was assigned the
responsibility for the Semi-Automated Forces (SAF)

Simulation, Interoperability, and Networking. The
Binghamton, New York site was assigned responsibility
for the User Interface, After Action Review, Mission
Planning, and Mobile Facility development. The
Arlington, Texas site was assigned responsibility for
overall management, all Manned Modules, all hardware
development, and final integration of all components.

PATTERNS OF SUCCESS

1: Collocate Key Activities Early For
Common Collaborative Vision [2]
Many of us who have grown up in collocated
environments tend to take for granted much of our
previous common experiences shared with our
teammates, as well as the ease with which we can
initiate an informal discussion. For example, during
start-up activities on a traditional collocated project we
often take for granted the simple fact that, at any
moment when a question may pop into our head, we
can get up and walk down the hall and initiate a
discussion with a teammate. Frequently, it is during
these unplanned sessions when shared common vision
begins to grow. Distributed development can diminish
this advantage of proximity.

Assume the following about two engineers:
� They are physically separated
� They do not share common experiences
� They do not communicate on a regular basis

If given identical design problems to solve, what are the
chances of getting the best ideas from both engineers in
a single integrated solution? This is a key difference
between traditional collocated and distributed projects,
and it is one that is often not well understood.

For those who understand the creative process, it should
not be a surprise to find out that many collaborative
ventures that start out on day 1 with parallel multiple
site activity end up with multiple divergent design paths
leading to intense leadership struggles. It is for this
reason that our first key pattern of success is to
collocate key activities early to establish a common
collaborative vision.

Distributed projects face the added challenge of
teammates with differing backgrounds and experiences.
It is therefore critical that, in addition to early
collocation of key activities, project leaders be open to
alternatives put forth by teammates who may have very
different backgrounds and experiences from their own.

AVCATT-A Early Collocation in Arlington, Texas
The AVCATT-A project was not conceived as a
traditional development project, but rather was to be
based on extensive reuse. This implied that a new
vision of how the project would execute was needed.
As plans were established early, key leaders were
involved in each step. It was not uncommon to face
heated conflict at this stage of the project.

During this early phase the project architecture team
consisted of over twenty (20) people including the
Software Lead, System Engineering Representatives,
the Process Engineer, System and Subsystem Lead
Engineers, and Customer Representatives. Architecture
meetings often spanned a wide range of topics
including requirements, hardware, software,
terminology, and process. It was not uncommon for
these meetings to become “brainstorming sessions”
frequently running over two hours in length. Although
significant and wide-ranging architectural issues were
being addressed, at times these sessions appeared to be
disorganized and out of control. Even seemingly
simple architectural issues took significant time to
resolve because of the size and diversity of the group.

During the early collocated months of the project, the
Architecture Team leaders were not quick to dictate the
next evolution of the architecture. The leaders
intentionally allowed the brainstorming and the
apparent “out of control” activities to occur. At this
stage the project leaders wanted to let all voices be
heard, and all issues be raised.

Specific topics addressed by the large Architecture
Team during this phase of the project included reviews
of system level architecture diagrams, High Level
Architecture (HLA) and Joint Technical Architecture-
Army (JTA-A) compliance, operating systems,
compilers and platforms, status of prototyping
activities, reports on product assessments, multi-
language issues, workflow issues, process guidance,
and team interactions.

Many of the issues discussed related to potential
reusable product constraints. Examples of products
being considered for reuse on the project at this time
included the Distributed Environment Manager (DEM)
being reused from the L3 Link F16 project, and the
Semi-Automated Force (SAF) product being reused
from the OneSAF Testbed project.

In reality, the Architecture sessions, as well as other
engineering activities, that occurred collocated over the
first 5 months of the project were not “out of control.”
This was a critical time when brainstorming allowed
leaders to create a vision of how the project would

evolve. Those early meetings supported the needs of the
creative process, and they initiated the building of a
virtual team shared experience and trust.

Customer participation in these early sessions was also
valuable. Not only was the customer able to provide
insight into system requirements from a user’s
perspective, but also a level of trust was established
between the developer and the customer. The developer
began to trust that the customer would not have
unrealistic demands or expectations; likewise the
customer developed a sense of trust that the
Architecture Team was making sound decisions that
would result in a product that satisfied the user’s needs.
Open communication and unconstrained information
sharing fostered teamwork and strengthened team
synergy.

Performing the initial architecture activities and
creating the organizational vision at a single collocated
site was a critical factor in determining the eventual
success of the AVCATT-A program.

2: Establish Process, Procedures, Tools,
Rules and Terminology Early [2]
Today, virtual communication is in its infancy. We are
just now starting to comprehend the implications of first
generation lessons on using the World Wide Web, tele-
and videoconferencing, and tools such as Netmeeting,
and E-mail. Beneath the obvious changes these new
communication vehicles bring, lays less obvious
effects on the processes, procedures, tools, and
terminology required for effective collaborative
operations.

In the past, many collaborative ventures have struggled
when trying to establish the right level of
process/procedure commonality across a virtual project.
When process commonality is driven too low, site-
specific culture clashes often lead to intense conflicts
and leadership struggles. But when left too high,
ambiguous terminology, divergent tools and
inconsistent work instructions can cause a dramatic rise
in the integration risk.

Many of today’s distributed projects are moving toward
incremental “build” approaches. A build can be
considered a set of hardware and software that meets a
subset of the functionality of the final deliverable
product. Incremental build approaches are becoming
more popular, particularly on distributed projects,
because they reduce integration risk by surfacing
miscommunication early. Incremental build approaches
have shown that there exists a critical need for key
project personnel to work together closely early.

The Build Manager is traditionally responsible for
defining the functional capabilities to be included in
each build. The Load Build/Configuration
Management (CM) Specialist defines the process for
the software to get into the load. This is usually tool
specific and relates closely to engineering workflow.
The Process Engineer is responsible for defining the
reviews that must occur, the checklists that must be
met, and any other key toll gates that must be passed,
such as coding standards, test requirements, and
documentation requirements. The technical architect
ensures that the products moving through the process
meet the Architecture Criteria.

Often, in the past on traditional collocated projects,
architecture criteria, and load build procedures have
been viewed as project-specific and therefore below the
organizational level “process freedom line.” But on
collaborative ventures these issues are critical and must
be discussed and agreed to early across all
organizations and/or physical sites. Failure to do so
has been a common contributing cause of past
collaborative failures.

Experience indicates that on distributed projects the
Build Manager, the Load Build/CM Specialist, the
Process Engineer, and the Technical Architect(s) must
work closely on a daily basis preceding the initial
integration phase. This level of close interaction is
usually not necessary on traditional collocated projects
because personnel can rely on previously existing
collocated cultures, common vision, and consistent
terminology to answer many of the related questions
that arise.

In many existing mature collocated environments the
team effectively relies on the unwritten subcultures
within the specific collocated organization. But on large
distributed projects with multiple organizations,
especially those that may have never previously
collaborated, fundamental issues such as platform,
compiler, process requirements, process toll-gates, and
even basic terminology can all become major points of
contention at critical points in the schedule.

AVCATT-A Common Collaborative Process
On AVCATT-A a single Software Development Plan
was employed to communicate common processes,
work instructions and project-specific process notes
(procedures) across the project. The process notes were
written at a tool-specific level and therefore needed to
be consistent with the architecture criteria (discussed
below) that was agreed to by all sites.

In support of reuse, the AVCATT-A process
encourages the reuse of not only code and
documentation products, but also associated styles and
methods. All legacy code on the project is maintained
in its legacy style. Legacy designs are updated
employing a consistent design methodology unless the
percentage of change exceeds a pre-established 30%
threshold. For example, the chosen SAF product on
AVCATT-A was developed to a specific design and
coding standard. Following the AVCATT-A reuse-
focused process, modifications to the SAF product were
made without deviations from the original design
methodology and coding style.

Support for varying methodologies could have added
significant integration risk to the AVCATT-A project.
However, this risk has been managed on AVCATT-A
through a number of vehicles, including well-defined
Architecture Compliance Criteria.

The Architecture Compliance Criteria on AVCATT-A
was developed to judiciously specify hardware
platform, compiler, and interfacing requirements.
Ensuring all products approved on AVCATT-A meet
the criteria is key to managing the integration risk. This
approach allows the project to leverage existing
strengths of not only existing products, but also the
processes and people that support those products. This
notion has been referred to as a “Freedom Line” in
other published works on distributed development [2].

As the vision on AVCATT-A for the common reuse-
focused collaborative procedures became clear, formal
presentations were provided to the full Engineering
team across all sites to communicate and cultivate a
sense of ownership throughout the virtual organization.
Because the procedures were developed with
collaboration in mind, and because they took into
consideration the specific needs of each site, they were
accepted across the full project.

It is important to note that AVCATT-A was able to
achieve greater process/procedure/tool commonality
across sites than many other distributed projects.
Unique project characteristics must be considered in
determining the right level of process/procedure/tool
commonality for other projects. The deeper we can
drive commonality (beyond process, and into
procedures, tools, and terminology), the more we can
reduce the chances of miscommunication.

AVCATT-A Multi-Level Integration Plan
A key to the AVCATT-A success was the development
of a multi-level detailed integration plan. This included
integration planning for all work activities at all sites,
and for incremental integration of the final product.

The final integration for each incremental build occurs
in Arlington, Texas.

On AVCATT-A through Build 1, no personnel from
remote sites were required to travel to Arlington, Texas
to perform integration & test. Key to this success was
the close interaction among the Build Manager, the
Configuration Management/Load Build Specialist, the
Process Engineer, and technical architects.

AVCATT-A Common Process Notes & Tools
On AVCATT-A the Rational ClearQuest/ClearCase
product-set was the chosen Work-Flow/Configuration
Management (CM) tool for all sites. A complete set of
workflow states were defined and captured in the
ClearQuest tool. These states, of course, needed to be
consistent with the detailed process notes that had been
developed on the project by the process engineer.

It is also worth noting that at proposal time multiple
compilers (Green Hills, GNAT) and multiple Operating
Systems (VxWorks, Linux, and Windows) had been
proposed to support the extensive planned reuse of
legacy software. Subsequent to contract award, this
approach was reviewed and modified driving the
majority of the real-time software to the GNAT family
of compilers and the LINUX operating system. This
was done to reduce life cycle maintenance costs, reduce
training cost, and provide common development tools
across all sites. In this case, the Architecture Team
looked beyond any one group’s view in the interest of
the overall project.

On many collaborative efforts intense leadership
struggles result when tools and hardware platforms are
not agreed to early. On AVCATT-A key decisions
made early, documented, and communicated to the full
team with respect to common process, procedures,
tools, compilers, and operating systems all contributed
to minimizing cross-site leadership struggles during the
critical integration phase. Failure to make key
decisions early and communicate the results to the full
team is a common pitfall witnessed on many past
unsuccessful distributed efforts.

Communication & Rules [2]
 One significant factor that contributes to the success or
failure of a distributed project is the ability of team
members to communicate openly and efficiently. On
many collocated projects, team members often have
established relationships based on previous experience
and they understand what is expected of them as a team
member based on local culture. Nevertheless, even
when virtual team members have worked together in
the past, the physical separation and differing
organizational reporting structures can sometimes cause

problems. It is for this reason that on a virtual project
more rules of communication need to be developed and
documented.

AVCATT-A Common Rules
The “Gang of Four”, discussed at greater length later in
this paper, was a small core architecture group
constructed to communicate architectural decisions
more rapidly. As an example of the need for
communication rules, the “Gang of Four” developed a
position paper on a topic referred to as “Isolated
Operation.” Unfortunately, before all team members
reached consensus, the paper was formally released as
project direction. When a team member who had been
away returned and reviewed the paper, he disagreed
with the approach taken. Eventually, the position paper
had to be rescinded, revised and re-released.

After this incident, the group instituted the rule that if
any member of the group was missing, the group could
still meet, but that no position papers could be released
without the full consensus of all four members.
Although, this may seem trivial and obvious, it is the
absence of these types of communication standards on a
distributed project that can lead to discord and
ultimately influence the successful completion of the
project.

From one perspective, this example is not unique to
collaborative projects. The importance of keeping “in
process” information inside the team until all team
members agree, is certainly relevant to any team,
collocated or distributed. But with virtual collaborative
teams it is often increasingly difficult to keep “in
process” information inside the team. This is because
we often find greater pressure on virtual project
personnel to report internal team information at
inappropriate times through inappropriate channels.
For more information on this subject refer to Chapter 5
of the referenced text. [2]

Terminology [2]
Often when personnel with divergent backgrounds and
experiences are pulled together on a collaborative
effort, terminology can be a significant hindrance to
effective team communication. One way to resolve this
is through working groups that brainstorm, document,
and communicate agreed to terminology.

AVCATT-A Terminology
On AVCATT-A, two areas were identified where
terminology was crucial and small groups were
convened to resolve related issues:

• Architecture
• WorkFlow-Build Process

Each is discussed briefly below.

Often, the AVCATT-A “Gang of Four” dealt with
clarification of terminology. Examples of terms that
required clarification are Restart, Reconstitute, and
Reset. While such terms may be common within the
Modeling and Simulation Domain, each can have subtle
differences in interpretation based on the differing past
experiences of personnel. Because of the differing past
experiences on collaborative efforts it becomes
increasingly important that we define precisely and
communicate terms across all project sites, including
the customer. On AVCATT-A the documentation of
many key terms was initially captured in position
papers that engineers could then utilize in system
development and implementation and the completion of
formal deliverables.

The small working group, discussed earlier, that
included the Build Manager, the Process Engineer, the
Load Build/CM Specialist, and the Technical Architect
spent many hours brainstorming and clarifying
terminology. Among the terms formally defined and
communicated to the full team were “Sandbox”
Environment, “Development” Environment, “Test”
Environment, “Unit” (tailored for Reuse), “In-Work”,
“Resolved”, “Recommended”, and “Authorized”. The
last four are examples of ClearQuest Workflow states.

The team intentionally chose terminology that did not
have a specific meaning from previous known projects.
This enabled everyone to learn a common new
language while minimizing miscommunication.

Because of the loss of a common culture on virtual
projects it becomes essential for process, procedure,
tools and terminology all to be agreed to early on the
project. This effort must also define the “process
freedom line” which indicates where a given site is
allowed to leverage site-specific procedures and tools.

It has been recommended that virtual project lessons
drive written virtual project rules (guidelines) to aid
engineers. These rules should include team meeting
rules, use of e-mail, and guidance in proper etiquette for
tele- and video conferencing. For more information on
first generation virtual communication lessons and rules
see chapter 5 of the referenced book. [2]

3: Allocate Work Based On Architecture
and Resource Availability [2]
When surveyed about distributed development, many
managers have expressed a concern related to not
knowing if a remote team member is “doing the right
thing”. But think, for a moment, about how a manager

gains confidence that a new team member, who has
been given a design task, is in fact “doing the right
thing” in a traditional collocated environment. Often,
when a manager assigns a new engineer a task, a senior
engineer is assigned to guide the new engineer.

Traditionally, many think of architecture as a technical
issue, and work split as a separate and distinct
management issue. But in practice work split decisions
can fracture a sound architecture. Furthermore, a sound
technical architecture can actually provide one of the
best task communication and coordination techniques.

Now think again about how a senior technical mentor
guides that new engineer. The most effective mentors
guide by listening first, and then providing feedback
that ensures approaches chosen fit within the range of
an organization’s acceptable solutions. In other words,
effective mentors guide through the vision of a
technical architecture. Although the process described
is commonplace, the relationship being described
among architecture, work split and tasking has not
always been well understood. [2]

When used appropriately, a sound technical architecture
can go a long way to addressing a manager’s concerns
about whether a remote team member is in fact “doing
the right thing”. Often it is through informal
architecture-centric discussions that teammates gain the
real insight needed to accurately meet task expectations
within the organization. But for architecture to be
effective as a task communication aid, the work split
definition across physically remote sites must follow
the architecture definition, not the reverse.

Too often we see work split decisions made without
due consideration to the technical architecture. When
work split decisions are forced prior to architecture
definition, we often find distributed projects suffering
from “fuzzy” task responsibilities and technical
leadership struggles. Without a well-defined
architecture, remote groups often find themselves
heading down inconsistent paths leading to project
conflict and control struggles. As an example, the
choice of computer hardware platform has been a topic
of intense inter-site battles on many distributed efforts.
[2]

While Architecture must precede work split, this is not
meant to imply that a vision of the work allocation
across teaming sites and organizations should not be
established early. However, it is intended to imply that
organizations/sites should expect a refinement, or even
a major change, of work allocation as the architecture
evolves in order to ensure the most effective work
allocation has been made based on the skills, resources

and specific product knowledge available across the
entire project. Another common pitfall often witnessed
on past virtual efforts is an overly rigid work split that
doesn’t stay in step with an evolving architecture and
with a changing resource availability picture. [2]

It is crucial to keep in mind that a prime motivator for
distributed operations is the “move work, not people,”
paradigm discussed earlier. To gain the full benefits,
this paradigm should be employed throughout the
project life. This is important because the resource
picture on distributed projects, like any project, can
change from phase to phase and from site to site. A key
to distributed project success is a work split agreement
that allows for tasking refinements across remote sites
consistent with the architectural evolution, and with
changing project resource requirements and
availability.

AVCATT-A Example of Allocation of Work based on
Architecture & Resource Availability
As mentioned in the overview, the Orlando site was
assigned the responsibility for the Semi-Automated
Forces (SAF) Simulation, and Networking, while the
Binghamton site was assigned responsibility for the
User Interface, and the Arlington site was responsible
for final integration of all components.

Because of the heavy reuse-focus on the project,
product knowledge evolved over time. As an example,
personnel assigned to the SAF spent considerable time
analyzing the existing OneSAF product to fully
understand its architecture. As a result, a “tight
coupling” between the front-end (User Interface), and
the back-end (SAF Simulation) became apparent. This
meant that changes to either would require team
members assigned to the front and back ends to interact
frequently. Studies have shown that when team
members must interact frequently and for short
intervals that remote operations can be a significant
deterrent to success. [3]

As a result, based on the added knowledge gained on
the SAF product architecture, a refinement of work split
was made allocating the front end user interface SAF
work to the Orlando site. In essence, evolution of the
system architecture dictated a refinement of project
work split and task allocation.

Another example of work split refinement can be seen
in the Distributed Environment Manager (DEM) task.
The DEM is a Distributed Interactive Simulation (DIS)
component that provides the software that manages
interfaces between AVCATT-A components. This
task was originally allocated to Arlington, Texas.

During early development activities it was identified
that the BMC and AAR stations would also require a
DEM-like function. Orlando was already tasked with
providing a SAF DIS interface and with providing
gateways for external system interfaces. As a result of
numerous architectural meetings it was strategically
decided to move the DEM development to Orlando in
support of interface management design commonality.

The decisions to allocate the complete SAF/DEM
efforts to the Orlando site were based on a number of
factors beyond the technical architecture. For example,
SAF and DIS interface expertise was known to exist in
the Orlando area. In addition, by managing interfaces at
a single site, it becomes easier to refine work
allocations across sites, provides tighter control of
interfaces and cross-checks design implementations.

AVCATT-A’s approach was, and continues to be, to
leverage the right assets/skills for each task, regardless
of where those skills may physically be located. This
strategy is consistent with the “move work, not people”
paradigm.

4: Establish a Virtual Culture,
Collaboration and Information Sharing
Methodologies and Tools [2]
A “Virtual Culture”[2] is a simple, yet powerful
concept that brings an information-age perspective to
the notion of culture. You can think of a “Virtual
Culture” as the infrastructure that supports effective
communication across distributed project sites.

The Virtual Culture, unlike traditional collocated
engineering cultures, is product-oriented. It is not
intended to replace past traditional collocated cultures.
In fact, it is not recommended that you try to replace
strong local cultures. Rather, past experience indicates
that teammate strengths should be leveraged within
their proven environments. Virtual Cultures can be
implemented through a Web Site, or through a Shared
Directory System, together with collaboration tools,
such as Netmeeting, e-mail, and tele- and
videoconferencing equipment. Refer to the referenced
text [2] for more information on Virtual Cultures.

It is worth noting that a key difference between a virtual
culture, and a traditional culture is found in its
formality. Experience indicates that an effective virtual
culture cannot be as informal as a traditional culture. In
other words, more needs to be “WRITTEN DOWN”.
[2]

AVCATT-A Virtual Culture Implementation
As an example, the AVCATT-A project implemented a
Virtual Culture through a combination of shared
directories on a private intranet, a project Web Site, and
an Internet accessible server to pass large data files to
the customer. Through these communication vehicles,
the System Engineering Management Plan (SEMP), the
Software Development Plan (SDP), Engineering
Processes and Procedures, Architecture Position Papers,
Meeting Minutes, Peer Review Results, Software and
System Development Folders, and Configuration
Managed Artifacts are all available to team members,
regardless of physical location.

One lesson learned related to the size of the project
specific Software Development Plan (SDP) and related
project-specific process notes. The original project
vision called for an SDP of no more than 20 pages, and
no more than 20 process notes, each 5 pages or less.
The SDP ended up three times as large as planned, and
the project developed 35 project-specific process notes,
many of which were over 10 pages in length. The
project continues to streamline and evolve its plans and
process notes, but upon review there is good reason for
the increase over the planned size. As mentioned
previously, on a distributed project we can no longer
rely on collocated cultures to convey project-specific
tool, terminology and work instruction information that
has been agreed upon to be common across all project
sites. Therefore, to reduce risk of miscommunication,
anticipate an increase in the written word in areas that
are common across sites and organizations.

It should be emphasized here that a return to the days of
voluminous milestone-type documentation is not being
recommended. Rather, the emphasis on the written
word is specifically focused on areas that must be
communicated across multiple sites/organizations. [2]

The use of tele and video-conferencing along with
collaboration tools such as Netmeeting, the immediate
access to both controlled and in process artifacts, and
the use of common terminology and tools all work to
support a single integrated common process and culture
on AVCATT-A that is not limited by physical location.
On AVCATT-A individuals work as teammates
building strong bonds and relationships often with
others they have never met face-to-face. When it
works, like it does on AVCATT-A, physical location
truly becomes a non-issue.

5: Establish an Organizational Structure
Conducive to Successful Collaboration [2]
Experience indicates that at the top end of the
organization where a breath of issues must be

addressed, the Integrated Product Team (IPT) structure
tends to function well. This is the level where “heads-
up” activities exist. By “heads-up” activities we mean
work that must look across the multiple sites and
organizations of the project. However, it has been
found that a strict IPT structure is weak when it comes
to producing products that include detailed design,
code, and test cases. It has also been found to have
weaknesses when it comes to the implementation of
common architectural solutions across a distributed
project. [2]

Where the “real” engineering, or what we refer to as
“heads-down” work, occurs, we have found that on
distributed efforts a “hybrid” of IPTs and functional
groups is often more effective. When we use the term
“heads-down” work we mean the engineering work
associated with building and testing actual products.

An example of why we recommend this structure can
be seen in the need for an infrastructure implementation
group that provides “common services” that multiple
product development teams may need across remote
sites. Too often, when virtual projects try to drive a
strict IPT structure deep into the organization,
responsibility for critical common services is lost. This
is because when a strict IPT structure is employed at
lower levels of the organization, we often find that each
of those lower level IPTs focuses almost exclusively on
their own specific product. As a result, each solves
their own “specific” problem in their own “specific”
way, and therefore commonality is lost. [2]

AVCATT-A Successful Collaborative Organizational
Structure
The original AVCATT-A organization included a
Systems Engineering Integration and Test (SEIT) IPT, a
Manned Module IPT, and a Training Environment IPT.
Early in the project this organization was found to be
insufficient in establishing an integrated architectural
solution.

Subsequent to the first Engineering Design Review
(EDR), a new single streamlined Engineering
Management team was put in place to provide
engineering guidance and oversight. This team
consisted of a single Engineering Manager responsible
for all engineering activities, a Software Manager
responsible for all Software and the Technical
Architecture, a Hardware Manager responsible for all
hardware development, a Systems Manager responsible
for all program requirements and final government
testing, and two functional managers responsible for the
Training Environment and Manned Module IPTs.

Once the streamlined management team was in place,
the AVCATT-A Engineering Manager held weekly
Engineering reviews addressing development efforts at
all sites. Monthly cost reviews were also held with all
AVCATT-A Cost Account Managers to cross check
information being provided during Engineering
Reviews. Periodic Senior Management reviews were
held to provide status to executive management on risk
and problem areas.

The streamlined engineering management chain
provided a single decision point for resolution of
Architecture issues (Software Manager), and multi-site
Engineering issues (Engineering Manager, or Senior
Management). The lack of a single point for conflict
resolution has been a major contributing factor to many
past distributed project failures [2].

By placing the Architecture Team directly under the
Software Manager who was responsible, and
accountable, for all software across all sites, common
architectural decisions could more effectively be
deployed into the product implementations. Recall that
the Software Manager was empowered to move work as
necessary among the sites. This organizational
structure allowed architecture activities to truly be
integrated directly into the implementation activities.
Too often, on past distributed projects, we have
witnessed ineffective Architecture Groups that
effectively “sit off to the side” making decisions which
“have no teeth”, and therefore fail to get implemented.

AVCATT-A EDRs & Architecture Team
The original project plan was to hold several large EDR
events during the life of the program in support of
stakeholder review and approval. Although effective,
there was a large overhead associated with these
reviews. In addition to the considerable amount of
travel required accommodating government, user,
engineering, test, logistics and management
representatives, there was a significant effort expended
by the developer in preparing for and participating in
these reviews.

Also, given the project’s tight schedule, and difficulties
in reaching consensus on technical issues with large
groups, in the summer of 2000 it was recognized that a
change in the way the EDRs were being conducted and
in the way the architecture was being evolved and
communicated was needed. Recall from our earlier
discussion that the early project Architecture Team
(AT) consisted of over twenty (20) people. This led the
customer and L-3 to redefine the process for EDRs and
to create the concept that became known as the
AVCATT-A “Gang of Four.”

The “Gang of 4” Concept
The “Gang of Four” concept was based on the
recognition that architectural decisions needed to be
made and communicated more rapidly, and a small core
team could accomplish that task more effectively than a
large committee. This core architecture group included
representatives from each of the major development
sites (3), plus a computer systems specialist.

The Deputy Software Lead provided a facilitator role
for the group. This was found to be necessary to keep
the group focused on priority risk-based issues. When a
consensus could not be reached the Software Lead was
called upon to provide an arbitrator role.

In support of the “Gang of Four,” a process was defined
by which issues were raised to the group, handled, and
results communicated. This included the production of
technical “Position Papers” establishing direction on
key architectural issues to the team.

The team was careful not to take on the full AVCATT-
A design responsibilities, but rather provide crisp
architectural guidance to engineering. In many cases,
this guidance equated to a bounding or interpretation of
the requirements.

Examples of issues addressed by the group included
clarification of terms, operational timelines, checkpoint
design, isolated operation, reset fidelity, and
interoperability guidance. After agreement on an issue
was reached by the “Gang of Four”, a position paper
would first be presented to the larger Architecture
Group through a specially called session, and then to all
of Engineering at regularly scheduled training sessions
held on Monday mornings.

The “Gang of Four,” the small working groups, and
clearly tasked engineering teams across the country are
all examples of the effective use of small teams on a
large complex project. Reference [4] provides more
information on operating a large project as a collection
of small projects. We have found on AVCATT-A that
the best role for leadership is one of service. Put the
vision in place, and then “let the horses run.”

Customer involvement also evolved in accordance with
this principle. It was determined that customer
participation in the process could be more efficiently
accomplished through small, collaborative and less
formal distributed reviews in lieu of the large, formal
collocated meetings. Initially, the large formal EDRs
were necessary to establish a shared vision and to
ensure common understanding of requirements. These
were eventually replaced with smaller design reviews

with only the essential development and customer
representatives participating remotely. These lower
level reviews created a common understanding of how
the overarching architecture was being transformed into
a viable system that satisfied the specified
requirements. Hardware and software reviews were
organized to correspond with natural system
architectural boundaries. Customer representatives
participated remotely through Netmeeting and
teleconferencing. Review materials and minutes are
distributed and maintained on the customer web site.

6: Vigilantly and aggressively identify and
resolve conflicts stemming from cultural
incompatibility, leadership struggles, lack
of trust, and inbred notions of competition
[2]
Unlike most traditional collocated projects, virtual
projects face the added challenge of teammates with
differing backgrounds, experiences and technical
expectations. This situation can give rise to frequent
and often intense conflict. Conflict in itself is not bad.
In fact, healthy conflict can invigorate a team as it
reaches resolution and overcomes challenges. While
most of the conflicts faced on distributed projects are
not really different from those traditionally faced in a
collocated environment, all too often on distributed
projects these conflicts remain unresolved for long
periods of time. In analyzing this situation it has been
found that many organizations have effective ways to
deal with site level internal conflict. Unfortunately,
conflict that crosses organizational or site level
boundaries is often not dealt with as effectively.

Managers must be trained to detect the warning signs of
unhealthy distributed project conflict, and vigilantly
and aggressively seek resolution. Furthermore, virtual
project organizations must be structured in a manner
that supports a strong conflict management process, in
particular, for conflicts that cross organizational or site
boundaries. For more information virtual project
conflict see the referenced text. [2]

AVCATT-A Conflict Resolution & Management In
Action
Key to the single streamlined management chain on
AVCATT-A is a single decision point for conflict
resolution for all Software and Architecture issues
(Software Manager), and a single decision point for
Engineering issues (Engineering Manager, or Senior
Management). The project level conflict procedure
called for conflicts to be handled at the lowest level in
the organization, but any conflicts in the software or
architecture areas that could not be resolved at the
lower levels were raised to the Software Lead, who had

been well trained in listening first, and taking timely
action. It was also critically important that the Software
Lead was empowered to make decisions in the best
interests of the project, regardless of site dependencies.
Too often, on past distributed efforts, when the “right”
decision for the project crossed organizational
boundaries, the conflict resolution process was
observed to break down. This has been identified as a
major contributing factor to many past distributed
project failures. [2]

Examples of project conflict that crossed organizational
boundaries and were handled effectively were discussed
earlier in the SAF and DEM work split examples. In
each of these cases the Software Manager looked
beyond the single site perspective, making timely
decisions in the best interests of the overall project.
Similarly, for systems and hardware engineering issues
that crossed site boundaries, senior management
involvement in setting priorities across sites and
acquiring needed people resources for the project in a
timely manner, helped resolve conflicts that potentially
could have impeded progress.

CONCLUSION

Distributed collaboration is a viable and necessary
solution to the challenges being faced in developing
complex integrated products with stringent schedule
and resource constraints. On AVCATT-A, a greater
commonality of processes, procedures, tools and
terminology was achieved than on many distributed
efforts. Achieving this commonality required early,
collocated establishment of a global vision, as well as
the early definition of the system architecture. The
common experiences and culture shared by many of the
leadership team certainly contributed to the degree of
commonality realized.

Process, procedures, tools, and terminology
commonality provides the distinct advantage of being
able to move work seamlessly across multiple sites
while minimizing associated training costs. Since
project personnel at all sites can be trained in a common
set of tools, processes and procedures, moving work
across the country is as simple as moving it into the
next cubicle. The AVCATT-A Collaborative
Environment supports the paradigm of “move work, not
people,” allowing access to a broader and deeper set of
skills and resources in support of project and company
goals. The allocation of work across various sites can
only be successfully accomplished when consideration
is given to the characteristics of a predefined system
architecture, in addition to the distribution of technical
resources.

It is important to note that the level of process,
procedure and tool commonality achieved on
AVCATT-A may not be appropriate for all
collaborative ventures. The appropriate degree of
commonality, as well as a suitable level of process
freedom, depends on project-specific characteristics. In
each case, the cost of commonality must be weighed
against the integration risk.

Common vision, managed conflict, and communication
focus, along with clear work split, common
architecture, and common terminology, are all factors
necessary to succeed in a collaborative effort.
However, above all else the success of AVCATT-A
must be attributed to its people. Although personnel do
not all live in the same city the project has established
its own “virtual culture” that provides an important
framework through which its people effectively
communicate.

It is critical that interpersonal bonds and trust among a
distributed team be established early. It is also crucial
that project leaders take an active role in instituting and
encouraging relationships and fostering trust. This
proved invaluable to the success of AVCATT-A

While AVCATT is a successful collaborative venture, it
is not without its share of conflict. All projects, in
particular all virtual projects, can expect conflict. On
AVCATT-A, conflicts are used productively to focus
vision, attain consensus, and improve both product and
processes. Leaders are continuously on the lookout for
unhealthy conflict and aggressively seek resolution and
opportunities to transform potentially disruptive
situations into positive experiences. The team is able to
resolve conflicts and advance, because of the trust and
respect shared by all team members, including
management, the Architecture Team, the distributed
engineering team, and the customer.

REFERENCES

1. Norton, Bob and Smith, Cathy, Understanding the
Virtual Organization, 1997 Barron’s Educational
Series, Hauppauge, NY, pg. 68.
2. McMahon, Paul E., Virtual Project Management:
Software Solutions for Today and the Future, St. Lucie
Press, An Imprint of CRC Press LLC, Boca Raton,
2001.
3. Gindele, Mark E., and Rumpf, Richard, Effects of
Collocating Integrated Product Teams, Program
Manager, July-August 1998, p. 38
4. McMahon, Paul E., “Integrating Systems & Software
Engineering: What Can Large Organizations Learn
from Small Start-Ups?,” Software Technology
Conference, Track 2 Process Improvement, May 2001

